2020
DOI: 10.3897/bdj.8.e47051
|View full text |Cite
|
Sign up to set email alerts
|

Designing an Herbarium Digitisation Workflow with Built-In Image Quality Management

Abstract: Digitisation of natural history collections has evolved from creating databases for the recording of specimens' catalogue and label data to include digital images of specimens. This has been driven by several important factors, such as a need to increase global accessibility to specimens and to preserve the original specimens by limiting their manual handling. The size of the collections pointed to the need of high throughput digitisation workflows. However, digital imaging of large numbers of fragile specimen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
11
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(12 citation statements)
references
References 23 publications
0
11
0
1
Order By: Relevance
“…Esto ha sido resultado del desarrollo de bases de datos asociadas a un SIG, el uso de plataformas en dispositivos móviles y el constante trabajo de campo para la identificación de las plantas. Esto es congruente con diversos trabajos que han resaltado la importancia de desarrollar procesos claros en la digitalización de colecciones botánicas (Morgan, 2011;de la Hidalga et al, 2020), así como fortalecer las herramientas de sistemas de información geográfica para tener datos actualizados en las áreas de un jardín botánico (Dobesova, 2012;Dobesova et al, 2013;Escuer & Uibo, 2019).…”
Section: Discussionunclassified
“…Esto ha sido resultado del desarrollo de bases de datos asociadas a un SIG, el uso de plataformas en dispositivos móviles y el constante trabajo de campo para la identificación de las plantas. Esto es congruente con diversos trabajos que han resaltado la importancia de desarrollar procesos claros en la digitalización de colecciones botánicas (Morgan, 2011;de la Hidalga et al, 2020), así como fortalecer las herramientas de sistemas de información geográfica para tener datos actualizados en las áreas de un jardín botánico (Dobesova, 2012;Dobesova et al, 2013;Escuer & Uibo, 2019).…”
Section: Discussionunclassified
“…The visibility of the specimen label data in the corresponding digital image ‘allows the data capture process to be undertaken remotely, both in distance and time’ (Haston et al, 2015 , p. 116). Digitising enables creation of a ‘digital specimen’ (Nieva de la Hidalga et al, 2020 ): generating a digital image of each specimen sheet, manually transcribing some or all of the data present on the specimen label into a searchable database, and then sharing that information for reuse via online biodiversity repositories such as the Atlas of Living Australia (ALA; https://www.ala.org.au/ ), Global Biodiversity Information Facility (GBIF; https://www.gbif.org/ ) and iDigBio ( https://www.idigbio.org/ ).…”
Section: Introductionmentioning
confidence: 99%
“…The highest‐quality specimen images available online tend to be from larger institutes (in this paper referred to as “institutional images”) and many follow the JSTOR Global Plants Initiative guidelines for the digitisation of herbarium specimens (JSTOR, 2018a,b). These recommend 600 pixels/dots per inch (dpi) as the ideal scanning resolution (although the online image is usually smaller; Nieva de la Hidalga & al., 2020), as well as the addition of scale bars and colour charts to facilitate analysis and measurement. Many institutes have also inserted barcodes and provided access to metadata.…”
Section: Introductionmentioning
confidence: 99%
“…Many papers covering digitisation have focused on process such as digitisation workflows and equipment (Blagoderov & al., 2012; Holovachov & al., 2014; Takano & al., 2019; Borsch & al., 2020; Nieva de la Hidalga & al., 2020; Davis & al., 2021), standards and best practice (Häuser & al., 2005; Baskauf & Kirchoff, 2008), novel ways of specimen data input such as Optical Character Recognition (OCR) (Drinkwater & al., 2014) and crowdsourcing (Zhou & al., 2018; King & al., 2019). Studies on the use of these images have concentrated on species identification or specific extractable traits, usually related to leaf morphology (Corney & al., 2012; Carranza‐Rojas & al., 2017; Borges & al., 2020; Pryer & al., 2020).…”
Section: Introductionmentioning
confidence: 99%