Digital farming approach merges new technologies and sensor data to optimize the quality of crop monitoring in agriculture. The successful fusion of technology and data is highly dependent on the parameter collection, the modeling adoption, and the technology integration being accurately implemented according to the specified needs of the farm. This fusion technique has not yet been widely adopted due to several challenges; however, our study here reviews current methods and applications for fusing technologies and data. First, the study highlights different sensors that can be merged with other systems to develop fusion methods, such as optical, thermal infrared, multispectral, hyperspectral, light detection and ranging and radar. Second, the data fusion using the internet of things is reviewed. Third, the study shows different platforms that can be used as a source for the fusion of technologies, such as ground-based (tractors and robots), space-borne (satellites) and aerial (unmanned aerial vehicles) monitoring platforms. Finally, the study presents data fusion methods for site-specific crop parameter monitoring, such as nitrogen, chlorophyll, leaf area index, and aboveground biomass, and shows how the fusion of technologies and data can improve the monitoring of these parameters. The study further reveals limitations of the previous technologies and provides recommendations on how to improve their fusion with the best available sensors. The study reveals that among different data fusion methods, sensors and technologies, the airborne and terrestrial LiDAR fusion method for crop, canopy, and ground may be considered as a futuristic easy-to-use and low-cost solution to enhance the site-specific monitoring of crop parameters.