The escalating demand for energy coupled with the escalating concerns over environmental pollution has propelled the advancement of renewable energy technologies. Among these, aqueous zinc ion batteries (AZIBs) stand out as the most promising energy system for large-scale storage, attributed to their high safety standards, cost-effectiveness, and substantial volumetric capacity. However, significant scientific challenges persist, encompassing issues such as the formation of zinc anode dendrites, hydrogen precipitation reactions, and the dissolution of anode materials in AZIBs. A critical component in this context is the separator, which serves as a pivotal barrier preventing direct contact between the positive and negative electrodes, thereby exerting a substantial influence on the reversible cycle life of AZIBs. Notably, commercial glass fiber (GF) separators are marred by insufficient mechanical toughness and considerable thickness, resulting in compromised electrochemical performance. Consequently, there exists an urgent imperative to explore and scrutinize alternative non-GF nanoporous separator materials to realize high-performance AZIBs. This paper provides a comprehensive review of recent non-GF nanoporous separator types and summarizes the current research status on their modification methods. Moreover, the paper offers a forward-looking perspective on the potential advancements in separators for AZIBs.