The fundamental difference of the voltage converter of the secondary power supply source for the transmitter-receiver modules of active electronically scanned arrays with impulse load and variable duty cycle from traditional voltage converters that constantly consume power from the primary network is shown. Methods for improving the quality of transient processes in voltage converter with constant power consumption during start-up by soft start are not applicable to improve the quality of transients in periodic current pulses caused by a pulsed load. Since any ripples, noises, instabilities in the power supply of the transmitter-receiver modules of active electronically scanned arrays operating in a linear mode lead to parasitic amplitude modulation of the emitted signal and to a deterioration in the quality of selection and target tracking, very strict requirements are imposed on the quality of the transmitter-receiver modules supply voltage (voltage ripple kп 0,5 %, the amount of overshoot of the output voltage sU 2 %, etc.). The article shows that such a quality of the output voltage with a pulsed load of the transmitter-receiver modules of active electronically scanned arrays can be obtained using a lower-type voltage converter, with a double-circuit negative feedback for the output voltage and current of the inductor, with a storage capacitor and with a power smoothing filter with the characteristics of Chebyshev and Butterworth. The work investigated the influence of the negative feedback depth on the output voltage and current of the smoothing filter choke, the value of the storage capacitor capacity, the type and parameters of the smoothing filter, and recommendations were given to select their optimal values, at which the required quality of the supply voltage for the transmitter-receiver modules of active electronically scanned arrays was ensured, taking into account the minimization of their dimensions.