The tendency of miniaturizing semiconductor products towards nano-size transistor in integrated chips has motivated this work on the semiconductor package. Consequently, Four Fuzzy PID controller architectures based on type 2 FLC are developed; the Interval Type-2 Fuzzy Logic PID, IT2FLC PID MOALO-based, IT2FLC PI-PD, and IT2FLC PI-PD MOALO controllers. These architectures are improved to overcome the inherent nonlinearity in X-Y table models and capacitate the uncertainties of the parameters and the disturbances. Both controllers are designed to improve the desired position specification at minimum settling time (Ts), rise time (Tr), overshoot through minimization of oscillation and friction rejection during tracking the desired position trajectory. The ant lion optimization (ALO) algorithm has been efficiently solved optimization problems with minimum parameters and execution time. Hence, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented to size the gains of the proposed controllers to get the desired position trajectory according to the required specification. A comparison with a related existing work shows minimal numerical values of improved transient specification response of Tr, Mp% and Ts for the MOALO-Based developed IT2 FLC PID and IT2 FLC PI-PD architectures. Observation of a higher Maximum Percentage of Enhancement settling time is noticed in both axes within the IT2FLC PI-PD architecture. Accordingly, transient performances of the four architectures have been significantly improved. The improvement is noticeable within the response of IT2FLC PI-PD architecture. The Maximum Percentage of Enhancement in the X-axis and Y-axis has been improved more than eight-fold and six-fold respectively using IT2FLC PI-PD architecture.