“…[8][9][10][11][12] Although most reported photochromic materials are organic compounds by far, inorganic photochromic materials possess some inherent advantages over the organic-based materials in the aspects of thermal stability, chemical resistance and fatigue properties, and hence have attracted more attention in recent years. [13][14][15][16][17][18][19][20][21] Currently, the research on inorganic photochromic materials mainly focuses on transition metal oxides (WO3, MoO3, TiO2, Nb2O5 and V2O5), [22][23][24][25][26][27] ferroelectrics (Na0.5Bi4.5Ti4O15, Na0.5Bi2.5Nb2O9, Bi4Ti3O12, KSr2Nb5O15, SrBi2Nb2O9 and K0.5Na0.5NbO3), 10,11,18,20,21,[28][29][30][31][32][33][34][35][36][37] and other robust oxides (BaMgSiO4, Sr2SnO4 and (Ca,Sr,Ba)5(PO4)3F). [38][39][40][41][42][43][44] For these materials, light-induced changes in physical properties such as refractive index, electron conductivity, magnetic properties, refractive index or absorption spectrum can be regarded as the digital code of "0" and "1", respectively.…”