Blockchain technology is a highly developed database system that shares information within a business web. It stores details in blocks connected chronologically, ensuring information integrity through consensus mechanisms that prevent unauthorised alterations. This decentralised system removes the need for a believable mediator, mitigating vulnerabilities and enhancing transaction security. Blockchain’s application spans the energy, finance, media, entertainment, and retail sectors. However, classical blockchain faces threats from quantum computing advancements, necessitating the development of quantum blockchain technology. Quantum blockchain, leveraging quantum computation and information theory, offers enhanced security and immutability. In this paper, different mathematical foundations, practical implementations and effectiveness of lattice‐based cryptography in securing blockchain applications are discussed. Analysis of how the cryptographic techniques can protect blockchain systems against quantum attacks is being done by using mathematical formulations and examples. Quantum computing strengthens blockchain security with advanced encryption and authentication, which is critical for safeguarding diverse sectors from evolving cyber threats. Further study on quantum‐resistant design is necessary if blockchain networks are to be robust and intact in the face of future technological developments.