Aiming at the problem that the traditional water-lubricated bearing cannot carry the heavy load and adapt to the constantly changing operating conditions for the high-power Rim Driven Thruster (RDT), the principle structure of the Magnetic Water-double-suspension Elastic-support Thrust Bearing (MWETB) is designed and the optimal structure parameters of the bearing are selected using simulation. To demonstrate the reliability of the MWETB under the RDTs’ actual working conditions, performance tests, which include the magnetic flux density, magnetic force, and lubrication performance, are carried out. The simulation and experimental results indicate that the optimal offset ratios are in two intervals, and the magnetic alignment and sheath materials have a great effect on the load reduction. The load-carrying force has obvious zoning characteristics with the change in bearing clearance. Besides, compared with the water-lubricated thrust bearings, the MWETB has advantages in terms of minimum film thickness and friction coefficient.