Rationally designed two-dimensional (2D) arrays that support the assembly of nanoscale components are of interest for catalysis, sensing, and biomedical applications. The computational redesign of a protein called TTM that undergoes calcium-induced self-assembly into nanostructured lattices capable of growing to dozens of micrometers are previously reported. The work demonstrates here that the N- and C-termini of the constituent monomers are solvent-accessible and that they can be modified with a hexahistidine extension, a gold-binding peptide, or a biotinylation tag to decorate nickel-nitriloacetic acid beads with self-assembled protein islands, conjugate gold nanoparticles to planar arrays, or control the immobilization density of avidin molecules onto 2D lattices through co-polymerization of biotinylated and wild type TTM monomers. These results showcase the potential of TTM as a versatile 2D scaffold for the fabrication of hierarchical structures comprising a broad range of nanoscale elements.