Transport of sediments is a critical process in the coastal zone because of its relation with coastal erosion, productivity and pollution. Of particular interest are the dynamics of suspended cohesive sediments, known as flocs, which can aggregate and break-up during the flocculation process. This changes their size, density, settling velocity and overall transport. Even though turbulence is widely accepted to be an important control on floc aggregation and break-up, specific and detailed floc behaviour is still not fully understood. The present study seeks to help in the understanding of the intra-tidal turbulence-induced flocculation under different current-wave regimes. Observations of floc size and currents at high sample rates are used to investigate the changes throughout a fortnightly cycle. The occurrence of waves at different stages during the sampling period enabled determination of three regimes of currents dominant, combined waves and currents,