The intergeniculate leaflet (IGL) has widespread projections to the basal forebrain and visual midbrain, including the suprachiasmatic nucleus (SCN). Here we describe IGL-afferent connections with cells in the ventral midbrain and hindbrain. Cholera toxin B subunit (CTB) injected into the IGL retrogradely labels neurons in a set of brain nuclei most of which are known to influence visuomotor function. These include the retinorecipient medial, lateral and dorsal terminal nuclei, the nucleus of Darkschewitsch, the oculomotor central gray, the cuneiform, and the lateral dorsal, pedunculopontine, and subpeduncular pontine tegmental nuclei. Intraocular CTB labeled a retinal terminal field in the medial terminal nucleus that extends dorsally into the pararubral nucleus, a location also containing cells projecting to the IGL. Distinct clusters of IGL-afferent neurons are also located in the medial vestibular nucleus. Vestibular projections to the IGL were confirmed by using anterograde tracer injection into the medial vestibular nucleus. Other IGL-afferent neurons are evident in Barrington's nucleus, the dorsal raphe, locus coeruleus, and retrorubral nucleus. Injection of a retrograde, trans-synaptic, viral tracer into the SCN demonstrated transport to cells as far caudal as the vestibular system and, when combined with IGL injection of CTB, confirmed that some in the medial vestibular nucleus polysynaptically project to the SCN and monosynaptically to the IGL, as do cells in other brain regions. The results suggest that the IGL may be part of the circuitry governing visuomotor activity and further indicate that circadian rhythmicity might be influenced by head motion or visual stimuli that affect the vestibular system.