The accumulation of spent nuclear fuel (SNF) is presently considered as a hindrance of the massive deployment of nuclear power plant, especially regarding the transuranic (TRU) elements. Eliminating TRU through transmutation is one of the most feasible alternative as a technical solution to solve the issue. This study explores the possibility of TRU transmutation using molten salt reactor (MSR) in a heterogeneous configuration, where a solid TRU is coated inside the fuel channel filled with liquid salt fuel. Such configuration is proposed to allow higher TRU loading into fluoride salt mixture without compromising the safety of the reactor. TRU coating was applied in consecutively outward radial fuel channel layers with coating thicknesses of 2.5 mm and 5 mm. Calculation was performed using MCNP6.2 radiation transport code and ENDF/B-VII.0 neutron cross section library. From the results, TRU coating with smaller thickness and positioned closer to the centre of the core exhibit higher transmutation efficiency due to exposure to higher neutron flux. Highest transmutation efficiency was achieved at 67.93% after 160 days of burnup. This shows a potential of achieving highly efficient TRU using heterogeneous configuration in MSR core.