The catalytic surface interacts with the gasphase by a variety of chemical and physical processes. Hence, optimization of design and operation conditions of catalytic reactors do not only require the understanding of the catalytic reaction sequence but also its coupling with mass and heat transport and potential homogeneous reactions. The chemical, thermal, and mass-transport interactions between the catalytic surface and the gas-phase are discussed in terms of the individual and combined interactions. The state-of-the-art modelling of reactive flows and its coupling with the catalytic surface is summarized. The interactions are illustrated by a number of examples such as reforming of hydrocarbons, catalytic combustion, exhaust-gas after-treatment, each focusing on a special aspect of catalyst-gas interactions. The potentials and limitations of the numerical simulations will be discussed including experimental techniques for model validation.