We propose a technique to design highly-efficient and -unidirectional DFB Raman fiber lasers based on the engineering of the grating’s coupling coefficient including a π-phase shift position in the fiber. For this purpose, first the ideal intra-cavity signal powers for different pump power levels are determined for given fiber lengths. Then, the sum and difference between the counter-propagating wave intensities at each small segment within fiber lengths are calculated resulting in determining the ideal grating’s coupling functions for co- and contra-directional-pumping. The steady-state behavior of the laser using realistic parameters is finally simulated for modified coupling functions considering the Kerr nonlinearity. For a 10 W co-directional-pumped, ∼1 m long single-mode super-efficient DFB, a ∼50% increase in the laser efficiency, more than 44 dB reduction in contra-directional lasing power, ∼15 times drop in the peak power of intra-cavity signal and ∼38% decrease in the unused-pump power are found, compared to those in a standard DFB with the same coupling-length product. Although an enhanced nonlinear refractive index due to thermal gradient reduces the output power of such lasers, it is shown that the super-efficient laser presents a better performance than the standard one, under such conditions.