Abstract:Anomalias em poços produtores de petróleo podem provocar impactos financeiros significativos. O uso de aprendizado de máquina para detectar essas situações podem prevenir interrupções indesejadas de produção bem como custos de manutenção. Nesse contexto, este trabalho propõe a aplicação e comparação de classificadores para detecção de anomalias em poços de produção de petróleo e gás. Classificadores de classe única Floresta de Isolamento, \textit{One-class Support Vector Machine} (OCSVM), \textit{Local Outlier… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.