Detect with Style: A Contrastive Learning Framework for Detecting Computer-Generated Images
Georgios Karantaidis,
Constantine Kotropoulos
Abstract:The detection of computer-generated (CG) multimedia content has become of utmost importance due to the advances in digital image processing and computer graphics. Realistic CG images could be used for fraudulent purposes due to the deceiving recognition capabilities of human eyes. So, there is a need to deploy algorithmic tools for distinguishing CG images from natural ones within multimedia forensics. Here, an end-to-end framework is proposed to tackle the problem of distinguishing CG images from natural ones… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.