Separate populations at the edge of a species range are receiving great attention and have been shown to be often different from populations in the core area. However, it has rarely been tested whether neighboring peripheral populations are genetically and evolutionarily similar to each other, as expected for their geographical proximity and similar ecological conditions, or differ due to historical contingency. We investigated isolation and differentiation, within‐population genetic diversity and evolutionary relationships among multiple peripheral populations of a cold‐adapted terrestrial salamander, Salamandra atra, at the southern edge of the species core range. We carried out population genetic, phylogeographic, and phylogenetic analyses on various molecular markers (10 autosomal microsatellite loci, three mitochondrial loci with total length >2,100 bp, two protein‐coding nuclear genes) sampled from more than 100 individuals from 13 sites along the southern Prealps. We found at least seven isolated peripheral populations, all highly differentiated from the remaining populations and differentiated from each other at various levels. The within‐population genetic diversity was variable in the peripheral populations, but consistently lower than in the remaining populations. All peripheral populations along the southern Prealps belong to an ancient lineage that is also found in the Dinarides but did not contribute to the postglacial recolonization of the inner and northern Alps. All fully melanistic populations from the Orobian mountains to the southern Dinarides represent a single clade, to the exclusion of the two yellow‐patched populations inhabiting the Pasubio massif and the Sette Comuni plateau, which are distinguished as S. atra pasubiensis and S. atra aurorae, respectively. In conclusion, multiple populations of S. atra at the southern edge of the species core area have different levels of differentiation, different amount of within‐population genetic diversity, and different evolutionary origin. Therefore, they should be regarded as complementary conservation targets to preserve the overall genetic and evolutionary diversity of the species.