Deep learning is an advanced machine learning technique that is used in several medical fields to diagnose diseases and predict therapeutic outcomes. In this study, using anteroposterior ankle radiographs, we developed a convolutional neural network (CNN) model to diagnose osteochondral lesions of the talus (OLTs) using ankle radiographs as input data. We evaluated whether a CNN model trained on anteroposterior ankle radiographs could help diagnose the presence of OLT. We retrospectively collected 379 cases (OLT cases = 133, non-OLT cases = 246) of anteroposterior ankle radiographs taken at a university hospital between January 2010 and December 2020. The OLT was diagnosed using ankle magnetic resonance images of each patient. Among the 379 cases, 70% of the included data were randomly selected as the training set, 10% as the validation set, and the remaining 20% were assigned to the test set to evaluate the model performance. To accurately classify OLT and non-OLT, we cropped the area of the ankle on anteroposterior ankle radiographs, resized the image to 224 × 224, and used it as the input data. We then used the Visual Geometry Group Network model to determine whether the input image was OLT or non-OLT. The performance of the CNN model for the area under the curve, accuracy, positive predictive value, and negative predictive value on the test data were 0.774 (95% confidence interval [CI], 0.673–0.875), 81.58% (95% CI, 0.729–0.903), 80.95% (95% CI, 0.773–0.846), and 81.82% (95% CI, 0.804–0.832), respectively. A CNN model trained on anteroposterior ankle radiographs achieved meaningful accuracy in diagnosing OLT and demonstrated that it could help diagnose OLT.