2021
DOI: 10.48550/arxiv.2111.03434
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Detecting Edgeworth Cycles

Abstract: We propose algorithms to detect "Edgeworth cycles," asymmetric price movements that have caused antitrust concerns in many countries. We formalize four existing methods and propose six new methods based on spectral analysis and machine learning. We evaluate their accuracy in station-level gasoline-price data from Western Australia, New South Wales, and Germany. Most methods achieve high accuracy in the first two, but only a few can detect nuanced cycles in the third. Results suggest whether researchers find a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?