Ant colony optimization (stocktickerACO) is a meta-heuristic algorithm inspired by food searching behavior of real ants. Recently stocktickerACO has been widely used in digital image processing. When artificial ants move in a discrete habitat like an image, they deposit pheromone in their prior position. Simultaneously, vaporizing of pheromone in each iteration step avoids from falling in the local minima trap. Iris recognition because of its great dependability and non-invasion has various applications. simulation results demonstrate stocktickerACO algorithm can effectively extract the iris texture. Also it is not sensitive to nuisance factors. Moreover, stocktickerACO in this research preserves details of the various synthetic and real images. Performance of ACO in iris segmentation is compared with operation of traditional approaches such as canny, robert, and sobel edge detections. Experimental results reveal high quality and quite promising of stocktickerACO to segment images with irregular and complex structures.