False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these attacks which require minimal knowledge about the parameters of the power bus systems. This makes it essential to develop defence approaches that are generic and scalable to all types of power systems. Deep learning algorithms provide state-of-the-art detection for FDIA while requiring no knowledge about system parameters. However, there are very few works in the literature that evaluate these models for FDIA detection at the level of an individual node in the power system. In this paper, we utilize multi-layer perceptron (MLP), convolutional neural networks (CNN), Long Short-Term Memory (LSTM), attention-based bidirectional LSTM, and hybrid models for the detection of the exact location of the attack node. All the models are evaluated on IEEE-14 and IEEE-118 bus systems in terms of row accuracy (RACC), computational time, and memory space required for training the deep learning model. Each model was further investigated through a manual grid search to determine the optimal architecture of the deep learning model, including the number of layers and neurons in each layer. Finally, the performance of each model was quantified on different variants of the dataset – which varied in their 𝑙2-norm.