Recently, a static spherically symmetric black hole solution was found in gravity nonminimally coupled a background Kalb-Ramond field. The Lorentz symmetry is spontaneously broken when the Kalb-Ramond field has a nonvanishing vacuum expectation value. In this work, we focus on the quasinormal modes and greybody factor of this black hole. The master equations for the perturbed scalar field, electromagnetic field, and gravitational field can be written into a Schrödinger equation. We use three methods to solve the quasinormal frequencies in the frequency domain. The results agree well with each other. The time evolution of a Gaussian wave packet is studied. The quasinormal frequencies fitted from the time evolution data agree well with that of frequency domain. The greybody factor is calculated by Wentzel-Kramers-Brillouin (WKB) method. The effect of the Lorentz-violating parameter on the quasinormal modes and greybody factor are also studied.