2015 IEEE 39th Annual Computer Software and Applications Conference 2015
DOI: 10.1109/compsac.2015.73
|View full text |Cite
|
Sign up to set email alerts
|

Detecting Malicious Inputs of Web Application Parameters Using Character Class Sequences

Abstract: Web attacks that exploit vulnerabilities of web applications are still major problems. The number of attacks that maliciously manipulate parameters of web applications such as SQL injections and command injections is increasing nowadays. Anomaly detection is effective for detecting these attacks, particularly in the case of unknown attacks. However, existing anomaly detection methods often raise false alarms with normal requests whose parameters differ slightly from those of learning data because they perform … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
6

Year Published

2016
2016
2021
2021

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(14 citation statements)
references
References 9 publications
0
8
0
6
Order By: Relevance
“…Garcia-Teodoro et al [22] represented the normal behaviors of a service by Markov models, aiming to generate HTTP intrusion signatures for Network Intrusion Detection Systems (NIDS). Soon, Zhong et al [23] used Markov models whose inputs are each character of parameter values in normal payloads to build the normal profile. Earlier works, such as HMM-Payl [24], made similar use of Markov models.…”
Section: Constant Detectionmentioning
confidence: 99%
“…Garcia-Teodoro et al [22] represented the normal behaviors of a service by Markov models, aiming to generate HTTP intrusion signatures for Network Intrusion Detection Systems (NIDS). Soon, Zhong et al [23] used Markov models whose inputs are each character of parameter values in normal payloads to build the normal profile. Earlier works, such as HMM-Payl [24], made similar use of Markov models.…”
Section: Constant Detectionmentioning
confidence: 99%
“…Existen distintas técnicas, metodologías y sistemas para la detección de ataques que generan defacement en una página web; como técnicas se encuentran el análisis dinámico, estático y la utilización de la inteligencia artificial. Por otra parte, existen diversas metodologías de trabajo en donde se describen las actividades para el análisis de ataques web (Bartoli, Davanzo, & Medvet, 2010;Zhong, Asakura, Takakura, & Oshima, 2015;Roesch, 1999). Adicionalmente, se han propuesto distintas soluciones como por ejemplo: Tripwire (Kim & Spafford, 1994), contenidos de políticas de seguridad (Stamm, Sterne, & Markham, 2010), IPVmon (IPVTec, 2014), StatusCake (Barnes, 2013), Socuri (2016), y Nagios (Aman, Yamashita, Sasaki, & Kawahara, 2014), entre otras.…”
Section: Sql Injectionunclassified
“…There are two approaches to the web applications attacks detection (Zhong et al, 2015): a technique is based on signatures in order to detect attacks from a database that contains several characteristics of the data transmitted from a malicious communication; the other is the technique of anomalies detection, which is composed of two phases: the first one is responsible to build a web page profile using different features extracted of the legimitate HTTP requests, and the second one is responsible to monitor and detect any anomaly into the requests with the profile previously created. Nevertheless, there are different techniques for the analysis on computer security , among these are: buenos resultados en el desarrollo de los axiomas con un mínimo de falsos positivos; y en la fase real PHP-Sensor se detectaron los catorce ataques controlados.…”
Section: Web Defacement Management Developmentmentioning
confidence: 99%
See 2 more Smart Citations