Interspeech 2016 2016
DOI: 10.21437/interspeech.2016-384
|View full text |Cite
|
Sign up to set email alerts
|

Detecting Mild Cognitive Impairment from Spontaneous Speech by Correlation-Based Phonetic Feature Selection

Abstract: Mild Cognitive Impairment (MCI), sometimes regarded as a prodromal stage of Alzheimer's disease, is a mental disorder that is difficult to diagnose. Recent studies reported that MCI causes slight changes in the speech of the patient. Our previous studies showed that MCI can be efficiently classified by machine learning methods such as Support-Vector Machines and Random Forest, using features describing the amount of pause in the spontaneous speech of the subject. Furthermore, as hesitation is the most importan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
1
1
1

Relationship

2
7

Authors

Journals

citations
Cited by 35 publications
(22 citation statements)
references
References 28 publications
0
20
0
2
Order By: Relevance
“…A growing body of work is highlighting the ongoing clinical validation of speech-based measures in a variety of clinical contexts. Speech has been demonstrated to have diagnostic validity for Alzheimer's disease (AD) and mild cognitive impairment (MCI) in studies using machine-learning classification models to differentiate individuals with AD/MCI from healthy individuals based on speech samples [34][35][36][37][38][39][40][41]. Additionally, speech analysis has been shown to be able to detect individuals with depression [42][43][44][45], schizophrenia [46][47][48][49], autism spectrum disorder [50], and Parkinson's disease [51,52], and can differentiate the subtypes of primary progressive aphasia and frontotemporal dementia [53][54][55].…”
Section: Clinical Validationmentioning
confidence: 99%
“…A growing body of work is highlighting the ongoing clinical validation of speech-based measures in a variety of clinical contexts. Speech has been demonstrated to have diagnostic validity for Alzheimer's disease (AD) and mild cognitive impairment (MCI) in studies using machine-learning classification models to differentiate individuals with AD/MCI from healthy individuals based on speech samples [34][35][36][37][38][39][40][41]. Additionally, speech analysis has been shown to be able to detect individuals with depression [42][43][44][45], schizophrenia [46][47][48][49], autism spectrum disorder [50], and Parkinson's disease [51,52], and can differentiate the subtypes of primary progressive aphasia and frontotemporal dementia [53][54][55].…”
Section: Clinical Validationmentioning
confidence: 99%
“…A kidolgozott módszer segítségével lehetséges a páciens állapotának becslése néhány beszédfeladat elvégzése által, így könnyebben eldönthető az adott kezelés hatékonysága körülményes orvosi vizsgálatok nélkül. Hasonló módon kidolgoztunk egy automatikus módszert [2], amivel lehetővé válik az enyhe kognitív zavar detektálása csupán beszédből, ez a rendszer szűrővizsgálatok során lenne alkalmazható. Sajnos mindkét rendszer csak limitált mennyiségű adaton lett tanítva, pontosan ezért a gyakorlatban való használata jelenleg nem reális cél, ehhez lényegesen több adatra lenne szükség és megfelelő klinikai kiértékelésekre.…”
Section: Korábbi Fejlesztésekunclassified
“…length of utterance and pauses) useful in identifying patients with mild cognitive impairment (MCI). In their recent work, Gosztolya et al [9] expanded the initial feature set to include descriptors (silence and filled pauses, breathing noises, laughter and coughs). Applying a number of different feature selection algorithms, they have tried to identify the most informative features for classification.…”
Section: Automatic Detection Of Dementiamentioning
confidence: 99%