Machining operations are chosen by aircraft manufacturers worldwide to process light aluminum alloys. This type of materials presents good characteristics in terms of weight and physicochemical properties, which combined with a low cost ratio making them irreplaceable in aircraft elements with a high structural commitment. Conventional machining processes such as drilling, milling and turning are widely used for aeronautical parts manufacturing. High quality requirements are usually demanded for these kinds of components but aluminum alloys may present some machinability issues, basically associated to the heat generated during the process. Among others, surface quality and geometrical deviations are highly influenced by the condition of the cutting-tool, its wear and the cutting parameters. Consequently, the understanding of the relationship among the process parameters, the quality features and the main wear mechanism is a key factor for the improvement in the productivity. In this chapter, the fundamental issues of drilling, milling and turning are addressed, dealing with the relationship between cutting parameters, wear phenomena and micro and macro geometrical deviations.