Duplication of information in databases is a major data quality challenge. The presence of duplicates, implying either redundancy or inconsistency, can have a range of impacts on the quality of analyses that use the data. To provide a sound basis for research on this issue in databases of nucleotide sequences, we have developed new, large-scale validated collections of duplicates, which can be used to test the effectiveness of duplicate detection methods. Previous collections were either designed primarily to test efficiency, or contained only a limited number of duplicates of limited kinds. To date, duplicate detection methods have been evaluated on separate, inconsistent benchmarks, leading to results that cannot be compared and, due to limitations of the benchmarks, of questionable generality.In this study we present three nucleotide sequence database benchmarks, based on information drawn from a range of resources, including information derived from mapping to Swiss-Prot and TrEMBL. Each benchmark has distinct characteristics. We quantify these characteristics and argue for their complementary value in evaluation. The benchmarks collectively contain a vast number of validated biological duplicates; the largest has nearly half a billion duplicate pairs (although this is probably only a tiny fraction of the total that is present). They are also the first benchmarks targeting the primary nucleotide databases. The records include the 21 most heavily studied organisms in molecular biology research. Our quantitative analysis shows that duplicates in the different benchmarks, and in different organisms, have different characteristics. It is thus unreliable to evaluate duplicate detection methods against any single benchmark. For example, the benchmark derived from Swiss-Prot mappings identifies more diverse types of duplicates, showing the importance of expert curation, but is limited to coding sequences. Overall, these benchmarks form a resource that we believe will be of great value for development and evaluation of the duplicate detection methods that are required to help maintain these essential resources.Availability: The benchmark data sets are available at https://bitbucket.org/biodbqual/benchmarks.