Some breeding facilities in the United States have crossbred Chinese and Indian rhesus macaque (Macaca mulatta) founders either purposefully or inadvertently. Genetic variation that reflects geographic origins among research subjects has the potential to influence experimental outcomes. The use of animals from different geographic regions, their hybrids, and animals of varying degrees of kinship in an experiment can obscure treatment effects under study because high interanimal genetic variance can increase phenotypic variance among the research subjects. The intent of this study, based on a broad genomic analysis of 2,808 single nucleotide polymorphisms (SNPs), is to ensure that only animals estimated to be of pure Indian or Chinese ancestry, based on both demographic and genetic information, are used as sources of infants for derivation and expansion of the California National Primate Research Center's (CNPRC) super-Specific Pathogen Free (SSPF) rhesus macaque colony. Studies of short tandem repeats (STRs) in Indian and Chinese rhesus macaques have reported that heterozygosity of STRs is higher in Chinese rhesus macaques than in Indian rhesus macaques. The present study shows that heterozygosity of SNPs is actually higher in Indian than in Chinese rhesus macaques and that the Chinese SSPF rhesus macaque colony is far less differentiated from their founders compared to the Indian-origin animals. The results also reveal no evidence of recent gene flow from long-tailed and pig-tailed macaques into the source populations of the SSPF rhesus macaques. This study indicates that many of the long-tailed macaques held in the CNPRC are closely related individuals. Most polymorphisms shared among the captive rhesus, long-tailed, and pig-tailed macaques likely predate the divergence among these groups.