2022
DOI: 10.3390/s22072806
|View full text |Cite
|
Sign up to set email alerts
|

Detecting Trivariate Associations in High-Dimensional Datasets

Abstract: Detecting correlations in high-dimensional datasets plays an important role in data mining and knowledge discovery. While recent works achieve promising results, detecting multivariable correlations especially trivariate associations still remains a challenge. For example, maximal information coefficient (MIC) introduces generality and equitability to detect bivariate correlations but fails to detect multivariable correlation. To solve the problem mentioned above, we proposed quadratic optimized trivariate inf… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?