Recent cyberattacks armed with various ICT (information and communication technology) techniques are becoming advanced, sophisticated and intelligent. In security research field and practice, it is a common and reasonable assumption that attackers are intelligent enough to discover security vulnerabilities of security defense mechanisms and thus avoid the defense systems’ detection and prevention activities. Web defacement attacks refer to a series of attacks that illegally modify web pages for malicious purposes, and are one of the serious ongoing cyber threats that occur globally. Detection methods against such attacks can be classified into either server-based approaches or client-based approaches, and there are pros and cons for each approach. From our extensive survey on existing client-based defense methods, we found a critical security vulnerability which can be exploited by intelligent attackers. In this paper, we report the security vulnerability in existing client-based detection methods with a fixed monitoring cycle and present novel intelligent on-off web defacement attacks exploiting such vulnerability. Next, we propose to use a random monitoring strategy as a promising countermeasure against such attacks, and design two random monitoring defense algorithms: (1) Uniform Random Monitoring Algorithm (URMA), and (2) Attack Damage-Based Random Monitoring Algorithm (ADRMA). In addition, we present extensive experiment results to validate our idea and show the detection performance of our random monitoring algorithms. According to our experiment results, our random monitoring detection algorithms can quickly detect various intelligent web defacement on-off attacks (AM1, AM2, and AM3), and thus do not allow huge attack damage in terms of the number of defaced slots when compared with an existing fixed periodic monitoring algorithm (FPMA).