In this chapter, the authors make use of signal processing techniques and machine learning models to analyze the EEG signal. First, the EEG signal is broken down into the frequency sub-bands using a discrete wavelet transform (DWT). Then the kernel principle component analysis (KPCA) method is used to reduce the dimension of data. They input these extracted features into a neural network to find if the patient has an epileptic seizure or not. The results of the classification process due to artificial neural networks (ANN) are studied and analyzed. Also, to recognize the abnormal activities in the EEG signal, caused by changes in neuronal electrochemical activity in epileptic patients, the EEG signal is processed using the Hilbert Huang transform (HHT). Given the wide array of epilepsy, we need to make use of intelligent devices in the treatment of epilepsy by using the patient's neurophysiology for better diagnosis before the clinical operation.