Traffic lights detection and recognition (TLDR) is one of the necessary abilities of multi-type intelligent mobile platforms such as drones. Although previous TLDR methods have strong robustness in their recognition results, the feasibility of deployment of these methods is limited by their large model size and high requirements of computing power. In this paper, a novel lightweight TLDR method is proposed to improve its feasibility to be deployed on mobile platforms. The proposed method is a two-stage approach. In the detection stage, a novel lightweight YOLOv5s model is constructed to locate and extract the region of interest (ROI). In the recognition stage, the HSV color space is employed along with an extended twin support vector machines (TWSVMs) model to achieve the recognition of multi-type traffic lights including the arrow shapes. The dataset, collected in naturalistic driving experiments with an instrument vehicle, is utilized to train, verify, and evaluate the proposed method. The results suggest that compared with the previous YOLOv5s-based TLDR methods, the model size of the proposed lightweight TLDR method is reduced by 73.3%, and the computing power consumption of it is reduced by 79.21%. Meanwhile, the satisfied reasoning speed and recognition robustness are also achieved. The feasibility of the proposed method to be deployed on mobile platforms is verified with the Nvidia Jetson NANO platform.