Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accurate information of traffic regulators at junctions is important for navigating and driving in cities. However, such information is often missing, incomplete or not up-to-date in digital maps due to the high cost, e.g., time and money, for data acquisition and updating. In this study we propose a crowdsourced method that harnesses the light-weight GPS tracks from commuting vehicles as Volunteered Geographic Information (VGI) for traffic regulator detection. We explore the novel idea of detecting traffic regulators by learning the movement patterns of vehicles at regulated locations. Vehicles’ movement behavior was encoded in the form of speed-profiles, where both speed values and their sequential order during movement development were used as features in a three-class classification problem for the most common traffic regulators: traffic-lights, priority-signs and uncontrolled junctions. The method provides an average weighting function and a majority voting scheme to tolerate the errors in the VGI data. The sequence-to-sequence framework requires no extra overhead for data processing, which makes the method applicable for real-world traffic regulator detection tasks. The results showed that the deep-learning classifier Conditional Variational Autoencoder can predict regulators with 90% accuracy, outperforming a random forest classifier (88% accuracy) that uses the summarized statistics of movement as features. In our future work images and augmentation techniques can be leveraged to generalize the method’s ability for classifying a greater variety of traffic regulator classes.
Accurate information of traffic regulators at junctions is important for navigating and driving in cities. However, such information is often missing, incomplete or not up-to-date in digital maps due to the high cost, e.g., time and money, for data acquisition and updating. In this study we propose a crowdsourced method that harnesses the light-weight GPS tracks from commuting vehicles as Volunteered Geographic Information (VGI) for traffic regulator detection. We explore the novel idea of detecting traffic regulators by learning the movement patterns of vehicles at regulated locations. Vehicles’ movement behavior was encoded in the form of speed-profiles, where both speed values and their sequential order during movement development were used as features in a three-class classification problem for the most common traffic regulators: traffic-lights, priority-signs and uncontrolled junctions. The method provides an average weighting function and a majority voting scheme to tolerate the errors in the VGI data. The sequence-to-sequence framework requires no extra overhead for data processing, which makes the method applicable for real-world traffic regulator detection tasks. The results showed that the deep-learning classifier Conditional Variational Autoencoder can predict regulators with 90% accuracy, outperforming a random forest classifier (88% accuracy) that uses the summarized statistics of movement as features. In our future work images and augmentation techniques can be leveraged to generalize the method’s ability for classifying a greater variety of traffic regulator classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.