The Android operating system has become increasingly popular, not only on mobile phones but also in various other platforms such as Internet-of-Things devices, tablet computers, and wearable devices. Due to its open-source nature and significant market share, Android poses an attractive target for malicious actors. One of the notable security challenges associated with this operating system is riskware. Riskware refers to applications that may pose a security threat due to their vulnerability and potential for misuse. Although riskware constitutes a considerable portion of Android’s ecosystem malware, it has not been studied as extensively as other types of malware such as ransomware and trojans. In this study, we employ machine learning techniques to analyze the behavior of different riskware families and identify similarities in their actions. Furthermore, our research identifies specific behaviors that can be used to distinguish these riskware families. To achieve these insights, we utilize various tools such as k-Means clustering, principal component analysis, extreme gradient boost classifiers, and Shapley additive explanation. Our findings can contribute significantly to the detection, identification, and forensic analysis of Android riskware.