Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Object detection in remote sensing images is crucial for airport management, hazard prevention, traffic monitoring, and more. The precise ability for object localization and identification enables remote sensing imagery to provide early warnings, mitigate risks, and offer strong support for decision-making processes. While traditional deep learning-based object detection techniques have achieved significant results in single-modal environments, their detection capabilities still encounter challenges when confronted with complex environments, such as adverse weather conditions or situations where objects are obscured. To overcome the limitations of existing fusion methods in terms of complexity and insufficient information utilization, we innovatively propose a Cosine Similarity-based Image Feature Fusion (CSIFF) module and integrate it into a dual-branch YOLOv8 network, constructing a lightweight and efficient target detection network called Multi-Modality YOLO Fusion Network (MMYFNet). This network utilizes cosine similarity to divide the original features into common features and specific features, which are then refined and fused through specific modules. Experimental and analytical results show that MMYFNet performs excellently on both the VEDAI and FLIR datasets, achieving mAP values of 80% and 76.8%, respectively. Further validation through parameter sensitivity experiments, ablation studies, and visual analyses confirms the effectiveness of the CSIFF module. MMYFNet achieves high detection accuracy with fewer parameters, and the CSIFF module, as a plug-and-play module, can be integrated into other CNN-based cross-modality network models, providing a new approach for object detection in remote sensing image fusion.
Object detection in remote sensing images is crucial for airport management, hazard prevention, traffic monitoring, and more. The precise ability for object localization and identification enables remote sensing imagery to provide early warnings, mitigate risks, and offer strong support for decision-making processes. While traditional deep learning-based object detection techniques have achieved significant results in single-modal environments, their detection capabilities still encounter challenges when confronted with complex environments, such as adverse weather conditions or situations where objects are obscured. To overcome the limitations of existing fusion methods in terms of complexity and insufficient information utilization, we innovatively propose a Cosine Similarity-based Image Feature Fusion (CSIFF) module and integrate it into a dual-branch YOLOv8 network, constructing a lightweight and efficient target detection network called Multi-Modality YOLO Fusion Network (MMYFNet). This network utilizes cosine similarity to divide the original features into common features and specific features, which are then refined and fused through specific modules. Experimental and analytical results show that MMYFNet performs excellently on both the VEDAI and FLIR datasets, achieving mAP values of 80% and 76.8%, respectively. Further validation through parameter sensitivity experiments, ablation studies, and visual analyses confirms the effectiveness of the CSIFF module. MMYFNet achieves high detection accuracy with fewer parameters, and the CSIFF module, as a plug-and-play module, can be integrated into other CNN-based cross-modality network models, providing a new approach for object detection in remote sensing image fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.