Computer Vision (CV) deals with replacement of human interpretation with computer based interpretation. It automatically analyses, reconstruct, and recognise objects in a scene from one or more images. Video surveillance is a topic in CV dealing with the monitoring of humans and their behaviours to analyze the habitual and unauthorized activities. An efficient video surveillance system detects moving foreground objects with lowest False Alarm Rates (FAR). This paper makes two proposals: one to detect the foreground in the video and the other to detect humans for surveillance applications. The proposed approach of foreground detection employs computations in YC b C r colour space for detecting moving objects in CCTVs. This system can handle slight camera movement and illumination changes. After foreground detection, the silhouette obtained is analysed and classified to determine whether it is humans or non-humans. In computer vision, usually human detection is based on human face, the head, and the entire body including legs as well as the human skin. In this work, the detection of humans is done based on the ratio of upper body and total height of silhouette. The precision and recall performance measures of the approach are computed and found to be superior to the existing Mixture of Gaussian approach in the literature.