Optical coherence tomography (OCT) and fundus autofluorescence (FAF) are important imaging modalities for the assessment and prognosis of central serous chorioretinopathy (CSCR). However, setting the findings from both into spatial and temporal contexts as desirable for disease analysis remains a challenge due to both modalities being captured in different perspectives: sparse three-dimensional (3D) cross sections for OCT and two-dimensional (2D) en face images for FAF. To bridge this gap, we propose a visualisation pipeline capable of projecting OCT labels to en face image modalities such as FAF. By mapping OCT B-scans onto the accompanying en face infrared (IR) image and then registering the IR image onto the FAF image by a neural network, we can directly compare OCT labels to other labels in the en face plane. We also present a U-Net inspired segmentation model to predict segmentations in unlabeled OCTs. Evaluations show that both our networks achieve high precision (0.853 Dice score and 0.913 Area under Curve). Furthermore, medical analysis performed on exemplary, chronologically arranged CSCR progressions of 12 patients visualized with our pipeline indicates that, on CSCR, two patterns emerge: subretinal fluid (SRF) in OCT preceding hyperfluorescence (HF) in FAF and vice versa.