“…Sensors with electronic and electro-acoustic transduction mechanisms, such as chemically sensitive resistors [24][25][26][27][28][29][30][31][32][33] and quartz-crystal microbalance (QCM) sensors [34][35][36] are among the most attractive and widespread elements for sensing applications that involve the detection and classification of volatile organic compounds (VOCs) in the gas phase. 9,11,13,16,19,20,24,37 Recently, we have shown that polycyclic aromatic hydrocarbon (PAH) derivatives as sensing materials in chemiresistors, field effect transistors or QCM sensors can provide good sensitivity and robust selectivity towards different polar and nonpolar VOCs, while being highly tolerant even to drastic humidity variations. 11,33,34,[38][39][40] For example, we have shown that a bilayer structure with a quasi 2D network of single wall carbon nanotubes (RNSWCNTs) as an under-layer and a micron-thick PAH film as an overcoat, can provide excellent detection and classification between polar and nonpolar VOCs, both in dry atmospheres with ~ 5% relative humidity (RH) and in almost fully humidified atmospheres (~80% RH).…”