In noise repetition-detection tasks, listeners have to distinguish trials of continuously running noise from trials in which noise tokens are repeated in a cyclic manner. Recently, it has been shown that using the exact same noise token across several trials ("reference noise") facilitates the detection of repetitions for this token [Agus et al. (2010). Neuron 66, 610-618]. This was attributed to perceptual learning. Here, the nature of the learning was investigated. In experiment 1, reference noise tokens were embedded in trials with or without cyclic presentation. Naïve listeners reported repetitions in both cases, thus responding to the reference noise even in the absence of an actual repetition. Experiment 2, with the same listeners, showed a similar pattern of results even after the design of the experiment was made explicit, ruling out a misunderstanding of the task. Finally, in experiment 3, listeners reported repetitions in trials containing the reference noise, even before ever hearing it presented cyclically. The results show that listeners were able to learn and recognize noise tokens in the absence of an immediate repetition. Moreover, the learning mandatorily interfered with listeners' ability to detect repetitions. It is concluded that salient perceptual changes accompany the learning of noise.