Background: Autoantibodies to glutamic acid decarboxylase (GADAs), specifically the 65-kDa isoform GAD65, and autoantibodies to the protein tyrosine phosphataselike molecule IA-2 (IA-2As) predict development of diabetes. Our aim was to develop a time-resolved immunofluorometric (TR-IFMA) dual-label assay method for the simultaneous detection of these autoantibodies and to evaluate the diagnostic sensitivity of the method compared with single-label TR-IFMA and fluid-phase radiobinding assay (RBA) in screening children with type 1 diabetes. Methods: We incubated combined biotinylated GAD65 and IA-2 proteins, glutathione S-transferase (GST)-IA-2, europium-labeled GAD65, terbium-labeled anti-GST antibody, and serum sample or calibrator and transferred aliquots to a streptavidin-coated 96-well microtiter plate for a second incubation. After washing, we added Delfia Enhancement solution to each well and measured the fluorescence of Eu. We developed the Tb fluorescence signal by use of the Delfia Enhancer solution and measured it. We analyzed serum samples from