Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some preprocessing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTI-CAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTI-CAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses.