Detection of COVID-19 lesions based on computed tomography using U-Net 2.5D and GAN
José Anatiel Landim,
Edson Carvalho,
João Otávio Diniz
et al.
Abstract:This paper proposes a computational method for automatically detecting suspected regions of COVID-19 from CT scans. COVID-19 has spread rapidly worldwide, infecting over 462 million people and causing over 6 million deaths. There are various methods to diagnose COVID-19, including imaging. The proposed method has five stages, including image acquisition, pre-processing, lung extraction, segmentation of suspected regions using U-Net 2.5D and Pix2Pix architectures, and result validation. The method achieved prom… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.