A novel multi slit X-ray backscatter camera based on synthetic aperture focusing AIP Conference Proceedings 1806, 130002 (2017)
Abstract:We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ~2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.