Accurate near-equilibrium potential energy and dipole moment functions have been calculated for the linear coinage-metal cyanides CuCN, AgCN, and AuCN using coupled cluster methods and sequences of correlation consistent basis sets. The explicitly correlated CCSD(T)-F12b method is used for the potential energy surfaces (PESs) with inclusion of core correlation, and is combined with contributions from molecular spinorbit coupling, scalar relativity, and effects due to higher order electron correlation. The resulting composite PESs are used in both perturbative and variational calculations of the ro-vibrational spectra. In addition to accurate equilibrium geometries, the ro-vibrational spectra are predicted, which are found to be relatively intense in the 200 -600 cm -1 range due to the bending and metal-carbon stretching modes. The CN stretch near 2165 cm -1 is also predicted to carry enough intensity to allow its observation by experiment. A strong Fermi-resonance is predicted between the first overtone of the bend and the fundamental of the metal-carbon stretch for both CuCN and AgCN. The heats of formation at 0 K are predicted from their calculated atomization energies to be 89.8, 88.6, and 104.5 kcal mol -1 for CuCN, AgCN, and AuCN, respectively. † email addresses: grant. hill@glasgow.ac.uk, Alexander.Mitrushchenkov@univ-mlv.fr, kipeters@wsu.edu 2