To date, PCR is a fundamental tool for most of the research concerning plant diversity analysis, marker-assisted selection, genetic purity testing, disease diagnostics, and transgene analysis. In all of these analyses, good-quality DNA serves as a template for amplification of target sequences. Extraction of good-quality DNA requires many steps, making the whole process time consuming, tedious, labor intensive, and expensive due to costlier and toxic chemicals. To overcome these preparatory steps from PCRbased DNA amplification, we have developed a direct-PCR amplification method for plants without isolating DNA. The method is unique and beneficial over some previously described methods of direct-PCR which fail due to inefficient amplification of target DNA in the presence of PCR inhibitors and crop specificity. Moreover, such methods are non-specific and, being destructive, cannot be replicated; one cannot completely rely on them due to lack of reproducibility. This method was streamlined from our earlier observation that alcohol-desiccated tissues maintain intact DNA for a long time. This method is specific, rapid, and, being nondestructive, allows replication, giving advantages over existing methods. The method was tested over a wide range of plant species and found very effective and quick in generating data. The method was successfully used to test the genetic purity of pearl millet hybrid (RHB-127) and its restorer (RIB 3135-18) and CMS line (ICMA 93333A). Our method is especially important for developing inexpensive and high-throughput non-invasive genetic analyses.