The skin is an ecosystem composed of specialized cell types that work together to serve as a physical protective barrier. Single-cell resolution is therefore essential to deconvolve skin's heterogeneity by identifying novel, distinct cell subsets in health and disease. Single-cell RNA sequencing is a highly meticulous methodology used to study the distinct transcriptional profiles of each cell within large tissue libraries at uniquely high resolution. The investigative capabilities achieved by this methodology allow previously unattainable analyses, including identification of rare cell populations, evaluation of cell-to-cell variation, and the ability to track trajectories of distinct cell lineages through development. In the past decade, application of transcriptomic analysis to skin biology and dermatology has greatly advanced understanding of homeostatic physiology in the skin, as well as a multitude of dermatologic diseases. Single-cell RNA sequencing offers tremendous promise for identification of novel therapeutic targets in dermatologic diseases, with broad implications of improving therapeutic interventions.