Characterization of HIV-1 from slow progressors is important to facilitate vaccine and antiviral drug development. To identify virus attenuations that may contribute to slower rates of disease progression, the full-length viral genomes from primary isolates of six slow progressing HIV-positive children were sequenced. Proviral DNA was extracted from cocultured peripheral blood mononuclear cells and used to PCR amplify, sequence, and extensively analyze the near full-length genomes and LTR regions. All primary HIV-1 isolates were HIV-1 subtype C throughout their genome, and amino acid (AA) sequence analysis revealed open reading frames for all genes. However, all isolates had at least one unusual gene/protein. For example, isolate LT5 had a 2AA insertion in the Vpr mitochondriotoxic domain. Isolate LT21 contained an additional 5AA in the C-terminus of tat exon 2, while integrase in isolate LT39 had an additional 4AA at the C-terminus. Rev from isolates LT45 and LT46 did not have the characteristic subtype C 16AA truncation, and in addition, had a further 3AA. Furthermore, altered functional domains were noted in several isolates, such as the cAMP-dependent kinase PKA phosphorylation site in Nef (LT5), a Vpr mutation involved in decreased proapoptotic activity (all isolates), and the Nef ExxxLL motif involved in the interaction with AP-1 and AP-2 (LT46). The slower HIV-1 disease progression in these six children may be attributed to altered protein functions. For example, LT46 Nef is unable to bind AP-1 and AP-2 and therefore is inactive on CD4 endocytosis. The biological relevance of these findings requires further investigation.