Hydrogen diffusion has an important role in solute-dependent hydrogen embrittlement in metals and metallic alloys. In spite of extensive studies, the complexity of hydrogen diffusion in solids remains a phenomenon that needs to be clarified. In this paper, we investigate the anisotropy of hydrogen diffusion in pure nickel single crystals using both an experimental approach and a thermodynamic development. As a first approximation, experimental data from electrochemical permeation and thermal desorption spectroscopy are described using the classical Fick’s laws and an apparent diffusion tensor. Within a thermodynamic framework, the diffusion equation can be derived from Fick’s laws with an apparent diffusion coefficient which contains an added solute content dependent term β. This term is due to the elastic strain field associated with the insertion of solute atoms. For nickel crystals, the dependence of β on the crystallographic orientation arises from the elastic anisotropy. Additionally, our results elucidate the discrepancies between the thermodynamic model and experimental observations of the effect of the solute concentration on the diffusion process. Moreover, this highlights the importance of the impact of hydrogen on vacancy formation and the subsequent consequences on the anisotropy of the apparent diffusion coefficient.