Multi-Object Tracking (MOT) in airborne videos is a challenging problem due to the uncertain airborne vehicle motion, vibrations of the mounted camera, unreliable detections, changes of size, appearance and motion of the moving objects and occlusions caused by the interaction between moving and static objects in the scene. To deal with these problems, this work proposes a four-stage hierarchical association framework for multiple object tracking in airborne video. The proposed framework combines Data Association-based Tracking (DAT) methods and target tracking using a compressive tracking approach, to robustly track objects in complex airborne surveillance scenes. In each association stage, different sets of tracklets and detections are associated to efficiently handle local tracklet generation, local trajectory construction, global drifting tracklet correction and global fragmented tracklet linking. Experiments with challenging airborne videos show significant tracking improvement compared to existing state-of-the-art methods.