(1) Background: This challenge is exacerbated by the aging of the rural population, leading to a scarcity of available manpower. To address this issue, the automation and mechanization of outdoor vegetable cultivation are imperative. Therefore, developing an automated cultivation platform that reduces labor requirements and improves yield by efficiently performing all the cultivation activities related to field vegetables, particularly onions and garlic, is essential. In this study, we propose methods to identify onion and garlic plants with the best growth status and accurately predict their live bulb weight by regularly photographing their growth status using a multispectral camera mounted on a drone. (2) Methods: This study was conducted in four stages. First, two pilot blocks with a total of 16 experimental units, four horizontals, and four verticals were installed for both onions and garlic. Overall, a total of 32 experimental units were prepared for both onion and garlic. Second, multispectral image data were collected using a multispectral camera repeating a total of seven times for each area in 32 experimental units prepared for both onions and garlic. Simultaneously, growth data and live bulb weight at the corresponding points were recorded manually. Third, correlation analysis was conducted to determine the relationship between various vegetation indexes extracted from multispectral images and the manually measured growth data and live bulb weights. Fourth, based on the vegetation indexes extracted from multispectral images and previously collected growth data, a method to predict the live bulb weight of onions and garlic in real time during the cultivation period, using functional regression models and machine learning methods, was examined. (3) Results: The experimental results revealed that the Functional Concurrence Regression (FCR) model exhibited the most robust prediction performance both when using growth factors and when using vegetation indexes. Following closely, with a slight distinction, Gaussian Process Functional Data Analysis (GPFDA), Random Forest Regression (RFR), and AdaBoost demonstrated the next-best predictive power. However, a Support Vector Machine (SVM) and Deep Neural Network (DNN) displayed comparatively poorer predictive power. Notably, when employing growth factors as explanatory variables, all prediction models exhibited a slightly improved performance compared to that when using vegetation indexes. (4) Discussion: This study explores predicting onion and garlic bulb weights in real-time using multispectral imaging and machine learning, filling a gap in research where previous studies primarily focused on utilizing artificial intelligence and machine learning for productivity enhancement, disease management, and crop monitoring. (5) Conclusions: In this study, we developed an automated method to predict the growth trajectory of onion and garlic bulb weights throughout the growing season by utilizing multispectral images, growth factors, and live bulb weight data, revealing that the FCR model demonstrated the most robust predictive performance among six artificial intelligence models tested.