Background
Electrical impedance tomography (EIT) is a method that can render continuous graphical cross-sectional images of the brain’s electrical properties. Because these properties can be altered by variations in water content, shifts in Na+ concentration, bleeding, and mass deformation, EIT has promise as a sensitive instrument for head injury monitoring to improve early recognition of deterioration, and to observe the benefits of therapeutic intervention. This study presents a swine model of head injury used to determine the detection capabilities of an inexpensive bed side EIT monitoring system with a novel intracranial pressure (ICP)/EIT electrode combination sensor on induced intraparenchymal mass effect, intraparenchymal hemorrhage, and cessation of brain blood flow. Conductivity difference images are shown in conjunction with ICP data, confirming the effects.
Methods
Eight domestic piglets (3–4 weeks old, mean 10kg), under general anesthesia, were subjected to four injuries: induced intraparenchymal mass effect using an inflated, and later, deflated 0.15mL Fogarty catheter; hemorrhage by intraparenchymal injection of 1mL arterial blood; and ischemia/infarction by euthanasia. EIT and ICP data were recorded 10 minutes prior to inducing the injury until 10 minutes post-injury. Continuous EIT and ICP monitoring were facilitated by a ring of circumferentially disposed cranial Ag/AgCl electrodes and one intraparenchymal ICP/EIT sensor-electrode combination. Data were recorded at 100 Hz. Two-dimensional tomographic conductivity difference (Δσ) images, rendered using data before and after an injury, were displayed in real-time on an axial circular mesh. Regions of interest (ROI) within the images were automatically selected as the upper or lower 5% of conductivity data depending upon the nature of the injury. Mean Δσ within the ROIs and background were statistically analyzed. ROI Δσ was compared to the background Δσ after an injury event using an unpaired, unequal variance t-test. Conductivity change within an ROI post- injury was likewise compared to the same ROI prior to the injury utilizing unpaired t-tests with unequal variance.
Results
Eight animal subjects were studied, each undergoing four injury events including euthanasia. Changes in conductivity due to injury showed expected pathophysiologic effects in an ROI identified within the middle of the left hemisphere; this localization is reasonable given the actual site of injury (left hemisphere) and spatial warping associated with estimating a 3D conductivity distribution in two dimensional space. Results are shown as mean ± 1 SD. When averaged across all eight animals, balloon inflation caused the mean Δσ within the ROI to shift by −11.4 ± 10.9 mS/m; balloon deflation by +9.4 ± 8.8 mS/m; blood injection by +19.5 ± 11.5 mS/m; death by −12.6 ± 13.2 mS/m. All induced injuries were detectable to statistical significance (p < 0.0001).
Conclusion
This study confirms that the bed-side EIT system with ICP/EIT combination sensor can detect induced trauma....